

ISY Developer’s Manual

Insteon JSDK (Java SDK)

ISY Developer’s Manual : Insteon JSDK

Universal Devices Inc.

Page - 2 -

TABLE OF CONTENTS

1.0 INTRODUCTION 3

2.0 ISY BUILDING BLOCKS 5

2.1 Layer 2 – ISY Model 5
2.1.1 Control (com.universaldevices.device.model.UDControl) 5
2.1.2 Action (com.universaldevices.device.model.UDAction) 6
2.1.3 Node (com.universaldevices.device.model.UDNode) 7
2.1.4 Group/Scene (com.universaldevices.device.model.UDGroup) 8
2.1.5 Putting it Together 8
2.1.6 ISY Messages and Web Services 9

3.0 ISY-JSDK FOR INSTEON 10

3.1 ISY-JSDK – The Building Blocks 10
3.1.1 Package com.universaldevices.common 10
3.1.2 Package com.universaldevices.resources.errormessages 10
3.1.3 Package com.universaldevices.device.model 11
3.1.4 Package com.universaldevices.client 11
3.1.5 Package com.universaldevices.upnp 11
3.1.6 Package com.universaldevices.scheduler 11
3.1.7 Package com.universaldevices.d2d (Triggers) 12
3.1.8 Package com.udi.isy.jsdk 12
3.1.9 Package com.udi.isy.jsdk.insteon 12
3.1.10 Package com.udi.insteon.client 13

3.2 Building a Simple ISY Client Application 14
3.2.1 Step 1 – Extend ISYInsteonClient 14
3.2.2 Step 2 – Start the Client 17

4.0 INSTEON SPECIFIC PACKAGES 20

ISY Developer’s Manual : Insteon JSDK

Universal Devices Inc.

Page - 3 -

1.0 Introduction

ISY is a sophisticated events based network platform which affords its clients

unprecedented levels of integration and functionality. ISY, at its core, is based on

UPnP standards and, as such, most of its capabilities are also immediately available

to UPnP as well as other Web Services clients such as WSD/DPWS (Web Services on

Devices and Device Profiles for Web Services).

At a high level, ISY operates and may be communicated with in the following order:

1. Upon power up, ISY sends out broadcasts messages of its location to all the

UPnP and WSD clients on the network

2. Interested clients may choose to:

a. Search for a specific ISY (based on the device type it supports such as

Insteon)

b. Listen in for ISY generated announcements on the network

c. Immediately start communicating with ISY using a predefined IP

(static) address and port, if one is already known

3. Upon discovery of an ISY – regardless of the method chosen – the clients

would then have to do perform the following in the exact order:

a. Get Supported Algorithms and Protocols (in case ISY is security

enabled) and choose an algorithm which best suits them

b. Get a Life Time Sequence Base number to reduce play-back attacks

(in case ISY is security enabled)

c. Create a session which, in case of security enabled ISY, might include

negotiating public keys, bulk keys, and signature digests

d. Authenticate themselves to ISY using UPnP Security 1.0

e. Subscribe to the ISY events from which time ISY continuously

notifies the clients of the changes in its state. Upon successful

subscription, ISY publishes all its current states to the client so that

the client and ISY are in synch at the moment of subscription. In this

respect, then, the clients are started with the current state of ISY and

are notified of all the changes as they occur and thus will never have

to poll ISY

f. Issuing Web Services to effect a change in ISY. In case of security

enabled ISY, all Web Services requests have to be at the minimum

signed (using ISY’s signature key) and fully encrypted (using ISY’s

bulk key) in case of sensitive services such as authentication and

reboot

ISY Developer’s Manual : Insteon JSDK

Universal Devices Inc.

Page - 4 -

4. During application exit, the client must notify ISY that it wishes to terminate

its session. This is achieved by issuing:

a. Expiring the session (in case ISY is security enabled)

b. Unsubscribing from ISY

5. During normal operations, the client must always respond back

(immediately) with an Ack to ISY’s Heartbeat events otherwise ISY assumes

a client malfunction (the client didn’t exit gracefully as outlined in step 4)

and terminates the associated session

Since adhering to and implementing a Web Services client is sometimes a daunting

task, ISY’s JSDK wraps all the complexity into a developer friendly library which

enables developers to implement ISY clients in a matter of hours. JSDK implements

and extends all the functionalities contained within ISY and, as such, developers

have immediate access to all the same features as currently available on ISY’s

default Java applet.

As mentioned before, ISY is event driven and thus every change in ISY is

notified/published to all the ISY subscribed clients in real-time and almost

immediately. In this respect, then, one could use the default ISY User Interface (a

signed Java applet) to effect a change while using one’s own client to view all the

changes that are taking place (and vice versa).

ISY Developer’s Manual : Insteon JSDK

Universal Devices Inc.

Page - 5 -

2.0 ISY Building Blocks

ISY’s stack, like any other good software platform, is layered such that each layer

only knows about the interfaces of the next layer in the stack and thus changes in

one layer do not impact any other layer. ISY has the following layers

1. �etwork – HTTP, UPnP, and Web Services

2. Model – The logical representation of ISY

3. Device – The abstraction of a physical device which relieves the higher

layers from having to know the specifics of any device’s communications

protocol (such as the Insteon Protcol)

4. Protocol – Takes care of the actual details of communicating on a physical

(or wireless) medium (such as RS232/422/485/IR/ZWave/etc.)

There is also an Administrative layer which can access all the other layers in the

stack and control their functions and behaviors while providing other functionalities

such as Logging, Time Management/Scheduling, D2D (Triggers), etc.

Since this manual is geared towards ISY Java client developers, the remainder of

the contents herein shall focus on Layer 2 – the Model. All of Layer 1’s functionality

and specifics are handled within the JSDK, and therefore, shall not be discussed

unless absolutely necessary. Similarly, Layers 3, 4, and the Administrative layer are

handled within ISY’s firmware and shall not be discussed.

2.1 Layer 2 – ISY Model

ISY Model comprises just a few but very important building blocks the

understanding of which makes it easier to extend JSDK’s functionality for

even more powerful applications and integration scenarios. Herein under is a

list of the most important building blocks:

2.1.1 Control (com.universaldevices.device.model.UDControl)

A Control is the logical representation of either a state or a function that may

be performed on a physical device (or a scene) linked to ISY. For example,

“DOB” is the name of the Control which instructs ISY to turn a “Deivce On”

while “ST” is the name of the Control which holds that state of a device.

In essence, then, Control is what “captures” and “controls” changes in the

states of physically linked devices or groups/scenes. Since Controls may be

associated with states, thus, all ISY publications (publish) to all clients

contain a Control parameter which identifies “what changed”.

ISY Developer’s Manual : Insteon JSDK

Universal Devices Inc.

Page - 6 -

For example, a CLISP (Climate SetPoint) Control not only allows the client

to effect a SetPoint change on a linked Thermostat but also, as soon as the

change takes effect (or the state changes), ISY notifies all the clients of the

change in “CLISP” and the current value thereto (see section 2.1.2: Action) if

any.

The most important attributes of a Control are:

A �ame – this is the Control’s only meaningful unit of communications with

ISY such as “CLISP”, “DOB”, “DIM”, etc.

A Label – this is an optional label that the developer/manufacturer may

ascribe to a Control such as “SetPoint”, “On”, “Dim”, “Fast On”, etc.

Actions – this is a list of optional while permissible actions which may be

performed on a Control such as “50” which, when applied to “DOB”, means

turn the “Device On to 50%”. Or, when “HEAT” is applied to “CLIMD”

(Climate Mode) it means change the thermostat “Mode to Heat”. For more

details, see section 2.1.2: Action.

2.1.2 Action (com.universaldevices.device.model.UDAction)

An Action is the permissible “value” which may be applied to a Control. A

Control may have a set of permissible Actions which are captured by a list.

When communicating a state change request to ISY, Action may be null.

This said, however, when ISY publishes (to its subscribers) changes to a

Control – and if the Control is associated with some state – then this attribute

holds the “current value” of the state. For example, when issuing a “DOB” to

ISY the “ST” Control (which is associated with a state) is updated and, as

such, ISY shall notify all the subscribed clients of a change in “ST” with

Action being the current value of “ST” such as “50”%.

The most important attributes of an Action are:

A �ame – this is the Action’s only meaningful unit of communications with

ISY. Depending on the Control, this attribute may take the form of a free

text/object field the value of which is filled in by ISY upon publications of

events.

A Label – this is an optional label that the developer/manufacturer may

ascribe to an Action such as “Heat”.

ISY Developer’s Manual : Insteon JSDK

Universal Devices Inc.

Page - 7 -

2.1.3 Bode (com.universaldevices.device.model.UDNode)

A Bode is a logical representation of a physical device linked to ISY. So, for

instance, KeypadLinc’s button A is a node and so are its buttons B, C, D

through H.

In essence – and when put in the context of a Control and Action – the Bode

is the only missing piece which, when all put together, enables effecting the

desired change on a physical device linked to ISY.

The most important attributes of Bode are:

An Address – this is the address which ISY uses to communicate with the

actual physical device such as 4 E 52 1

A �ame – this is the user friendly name which can be changed by any ISY

client

States (device Variables) – this is the list of all the Controls for a Bode and

their current associated Actions (values)

A note on Insteon addresses:

Since, as mentioned before, every button is also considered a device within

ISY, thus, each button shall have its own address conforming to the following

syntax:

X X X B – where X is the actual Insteon address for the device in hex and B

is the button group number.

For instance, a 6 button KeypadLinc with address 04 E8 52 will have the

following nodes within ISY:

4 E8 52 1 – the main [loaded] button

4 E8 52 A – Button A

4 E8 52 B – Button B

4 E8 52 C – Button C

4 E8 52 D – Button D

ISY Developer’s Manual : Insteon JSDK

Universal Devices Inc.

Page - 8 -

2.1.4 Group/Scene (com.universaldevices.device.model.UDGroup)

A Group is a specialization of Bode with the added capability of aggregating

associated/linked Bodes. Just like a Bode, a Group may also be used to effect

a change in ISY. The only difference is that issuing a state change on a

Group results in ISY sending notifications on the states of all the Bodes

within that Group/Scene (if there were any changes).

2.1.5 Putting it Together

By having a triplet {control, action, [node or group/scene]} it’s quite easy to

effect change on the physical devices which are linked/attached to ISY. For

instance:

1. To turn on the light at address 7 B0 B2 to 60%, a simple method call of the

form change�odeState(“DOB”, “60”, “7 B0 B2 1”), is all it takes.

2. To turn off the scene at address 52626, a simple method call of the form

changeGroupState(“DOF”, null, “52626”), is all it takes.

ISY-JSDK takes care of all the protocol handling/hand shaking and Web

Services calls behind the scenes and, as mentioned before, any changes in

ISY are published to all the clients.

ISY Developer’s Manual : Insteon JSDK

Universal Devices Inc.

Page - 9 -

2.1.6 ISY Messages and Web Services

UDML™ (Universal Devices Markup Language) and DIML™ (Device

Intelligence Markup Language) collectively are XML representations of

messages and models which are communicated between ISY and its clients.

The Schemas and WSDLs for these languages shall be published in the ISY

Web Services Developers Guide (WS-SDK) in the near future. This said,

however, ISY itself makes these documents accessible through the following

URLs where http://a.b.c.d:port is ISY’s base URL:

3. http://a.b.c.d:port/WEB/UPBPSVC.XML - is ISY’s Web Services interface

4. http://a.b.c.d:port/0/h - is ISY’s configuration document which describes the

characteristics of the ISY as well as those of Controls (see section 2.1.1) and

Actions (see section 2.1.2) and any relationship thereto

5. http://a.b.c.d:port/WEB/BODESCBF.XML - is ISY’s Bode/Group (see section

2.1.3 and section 2.1.4) configuration document

Apart from the aforementioned URLs, the developer is encouraged to “walk”

through ISY’s client library and inspect these structures by simply invoking

the “toDIML” method on the relevant objects.

ISY Developer’s Manual : Insteon JSDK

Universal Devices Inc.

Page - 10 -

3.0 ISY-JSDK for Insteon

ISY-JSDK contains all the necessary code to implement fully functional ISY-Insteon

clients. In order to make this possible, ISY implements an abstract class, named

ISYInsteonClient (com.udi.isy.jsdk.insteon), which is a façade to all methods and

attributes one needs to develop applications that communicate, monitor, and even

administer ISY for Insteon devices. Starting with this class, alongside a fully

functional example (example.MyISYInsteonClient) and a complete set of Javadocs

for all the ISY-JSDK classes have proven sufficient for designing and developing

ISY clients in a matter of hours.

3.1 ISY-JSDK – The Building Blocks

Although utilizing ISYInsteonClient is, in and of itself, sufficient to develop

quite sophisticated ISY client applications/applets for Insteon, however – and

for the sake of completeness - herein under is a list of the most important

building blocks/packages in ISY-JSDK and a brief description thereto.

For a complete description and information on all the packages and classes

described herein under, please refer to and peruse the accompanying

Javadocs.

3.1.1 Package com.universaldevices.common

This package includes common definitions used across the library.

Constants – system wide constants

DeviceTypes – system wide device types (category/subcategory)

3.1.2 Package com.universaldevices.resources.errormessages

This package includes error messages and error handling routines.

Errors – implements Error handling routines and messages.

Clients interested in receiving library generated errors

must implement the ErrorEventListener interface (in

the same package) and use Errors.addErrorListener()

to register their interest in receiving error notifications

ISY Developer’s Manual : Insteon JSDK

Universal Devices Inc.

Page - 11 -

3.1.3 Package com.universaldevices.device.model

This package has implementations for the ISY Model as described in section

2.1 .

UDControl – implements a Control as described in section 2.1.1

UDAction – implements an Action as described in section 2.1.2

UDBode – implements a Bode as described in section 2.1.3

UDGroup – implements a Group as described in section 2.1.4

Groups are used as representations of a Scene in

Insteon

 IModelChangeListener – this interface, when implemented by

subclasses, has all the call-back methods which are invoked by the

underlying library to notify the client of any change in ISY

3.1.4 Package com.universaldevices.client

This package includes the core client class.

UDClient – implements the “core” and very basic client

functionality. This class is the super-class of all ISY clients

3.1.5 Package com.universaldevices.upnp

This package includes UPnP implementations alongside a logical (proxy)

representation of an ISY.

UDProxyDevice – is the proxy to ISY. All direct communications

to/from ISY are handled within this class

UDControlPoint – is an implementation of UPnP Control-Point

3.1.6 Package com.universaldevices.scheduler

The classes within this package take care of administering/configuring ISY’s

sophisticated scheduler.

ScheduleItem – is the representation of one schedule which can be

submitted to

Schedules – is a group of schedules

ISY Developer’s Manual : Insteon JSDK

Universal Devices Inc.

Page - 12 -

3.1.7 Package com.universaldevices.d2d (Triggers)

The classes within this package take care of administering/configuring ISY’s

Trigger engine.

D2DElements – a Condition or a Response

D2DSense – a Trigger: a group of Condition/Response scenarios

D2D – aggregation of D2DSense (triggers)

3.1.8 Package com.udi.isy.jsdk

ISYClient – extends UDClient functionality (see section 3.1.2) and

wraps (façade pattern) all the pertinent methods in UDProxyDevice

and UDControlPoint to give the developer an easier way of developing

ISY clients.

UDClient – core client functionality

 ISYClient – adds ISY communications functionality

3.1.9 Package com.udi.isy.jsdk.insteon

ISYInsteonClient – extends ISYClient functionality (see section

3.1.6) to encompass Insteon behavior such as scene management.

UDClient – core client functionality

 ISYClient – adds ISY communications functionality

 ISYInsteonClient – adds Insteon Behavior

All ISY Insteon Clients must extend this class.

ISY Developer’s Manual : Insteon JSDK

Universal Devices Inc.

Page - 13 -

3.1.10 Package com.udi.insteon.client

This package include constants and utilities which make it easier to handle

Insteon devices.

InsteonConstants – Insteon specific constants such as the Control

and Action names

InsteonOps – utilities for Insteon device management

SceneProfileAttributes – encompasses scene attributes (on-level/ramp-

rate) for a node within a scene

ISY Developer’s Manual : Insteon JSDK

Universal Devices Inc.

Page - 14 -

3.2 Building a Simple ISY Client Application

As mentioned before, ISY is based on an events based framework which

publishes all the changes within to all the subscribed clients. In order to

make it easier to capture all these publications while having a simple

interface to communicate with ISY, all ISY Inseton clients must extend the

ISYInsteonClient (see section 3.1.9) abstract class which:

a. Has all the necessary methods to communicate with ISY

b. Provides simple and intuitive abstract call-back methods which are to

be implemented by all the clients

As it is with every engineering effort, it’s of utmost import to design an

application based on requirements while applying system constraints based

on the tools, software, and system patterns to be utilized. In this respect,

then, it’s always desirable to have documentation and example code while

investigating a technology for its merits and constraints. As such, the

following sections describe the step necessary to develop, run, and test an ISY

Insteon Client based on the fully functional example which can be found in

example.MyISYInsteonClient.

3.2.1 Step 1 – Extend ISYInsteonClient

The first step in developing an ISY Insteon client is to extend the

ISYInsteonClient which immediately gives the subclass all that is necessary to

effect any change in ISY while being notified of all ISY events.

The code snippet below is taken directly out of the fully functional example

which may be found at example.MyISYInsteonClient which can serve as the

tool to investigate and appreciate the ease with which an ISY Insteon client

can be developed.

ISY Developer’s Manual : Insteon JSDK

Universal Devices Inc.

Page - 15 -

public class MyISYInsteonClient extends ISYInsteonClient{

 /**

 * Constructor

 * Registers this class as IModelChangeListener

 *

 * @see IModelChangeListener

 *

 */

 public MyISYInsteonClient(){

 super();

 }

/**

 * The following methods are all call-back which should be implemented if

 * and only if there’s a need to be notified of that specific event

 *

 */

 public void onNewDeviceAnnounced(UDProxyDevice device) {

 if (device.securityLevel>UPnPSecurity.NO_SECURITY){

 if (device.isAuthenticated && device.isOnline)

 return;

 try{

//authenticate does all the UPnP Security hand-

//shaking, key exchange, etc. and when all is

//successful, then it subscribes to ISY events by

//calling device.subscribeToEvent()

 super.authenticate("admin", "admin");

 }catch(NoDeviceException e){

 System.err.println("This should never happen!");

 }

 }else{

 //just subscribe to events

 device.subscribeToEvents(true);

 }

 }

 public void onDiscoveringNodes() {

 System.out.println("I am in Linking Mode ...");

 }

 public void onNodeDiscoveryStopped() {

 System.out.println("I am no longer in Linking mode ...");

 }

 public void onGroupRemoved(String groupAddress) {

 System.out.println("Scene: "+groupAddress+

" was removed by someone or something!");

 }

public void onGroupRenamed(UDGroup group) {

 System.out.println("Scene: "+group.address+"

was renamed to "+group.name);

 }

ISY Developer’s Manual : Insteon JSDK

Universal Devices Inc.

Page - 16 -

//This is the method which is called every time there’s a change

//in a node, control, and action triplet

public void onModelChanged(UDControl control, Object value, UDNode node)

{

 System.out.println("Someone or something changed "+

control.label+ " to "+value+" at "+node.name);

 }

 public void onNetworkRenamed(String newName) {

 System.out.println("Ah, the network was renamed to " + newName);

 }

 public void onNewGroup(UDGroup newGroup) {

System.out.println("Yummy: we now have a new scene with address

"+newGroup.address+" and name "+newGroup.name);

 }

 public void onNewNode(UDNode newNode) {

System.out.println("Yummy: we now have a new Insteon device with

address "+newNode.address+" and name "+newNode.name);

 }

 public void onNodeError(UDNode node) {

System.out.println("What's going on? The Insteon device at address

"+node.address + " and name "+ node.name+" is no longer responding

to my communication attempts!");

 }

 public void onNodeRemoved(String nodeAddress) {

System.out.println("Whooah ... node with address "+nodeAddress+"

was permanently removed from ISY");

 }

 public void onNodeRemovedFromGroup(UDNode node, UDGroup group) {

System.out.println("Insteon device with address "+node.address+"

and name "+node.name+" is no longer part of the "+group.name+ "

scene!");

 }

 public void onNodeRenamed(UDNode node) {

System.out.println("Insteon device with address "+node.address+"

was renamed to "+node.name);

 }

 public void onNodeMovedAsMaster(UDNode node, UDGroup group) {

System.out.println("Insteon device "+node.name+" is now part of

the "+group.name+ " scene as a master/controller");

 }

 public void onNodeMovedAsSlave(UDNode node, UDGroup group) {

System.out.println("Insteon device "+node.name+" is now part of

the "+group.name+ " scene as a slave/responder");

 }

ISY Developer’s Manual : Insteon JSDK

Universal Devices Inc.

Page - 17 -

 public void onDeviceOffLine() {

 System.out.println("oo; ISY is offLine. Did you unplug it?");

 }

 public void onDeviceOnLine() {

 System.out.println("Hooray: ISY is on line ...");

 }

 public void onSchedulesUpdated() {

System.out.println("Some of the schedules have been updated;

get the lastest schedules");

 }

 public void onSystemStatus(boolean busy) {

 if (busy)

System.out.println("I am busy now; please give me some

reprieve and don't ask me for more!");

 else

 System.out.println("I am ready and at your service");

 }

 public void onInternetAccessDisabled() {

System.out.println("You can no longer reach me through the

internet");

 }

 public void onInternetAccessEnabled(String url) {

System.out.println("I can now be accessed on the internet at

"+url);

 }

}

3.2.2 Step 2 – Start the Client

There are two ways to start the client (where myISY refers to an instance of

MyISYInsteonClient):

a. If the computer running the client is UPnP enabled, the simple invocation

of the start() method on MyISYInsteonClient is all that’s necessary:

myISY.start();

b. If UPnP is not available or if there are firewall issues, the combination of

ISY’s IP address/Port and its UUID are required to start communicating

with ISY:

myISY.start("uuid:00:03:f4:02:66:e0","http://192.168.0.131:16872/");

ISY Developer’s Manual : Insteon JSDK

Universal Devices Inc.

Page - 18 -

During this step it’s also advised to implement and register an

ErrorEventListener (see section 2.2.1) which is going to be notified of all the

errors as they occur either within the library itself or generated by ISY. All

implementers of the ErrorEventListener interface which are registered with

the Errors class are notified of the error’s code and, as such, they could

conditionally decide what course of action should be taken next. The

following is an implementation of ErrorEventListener which simply prints

out the error code and any text messages associated with it. This code can be

found at example.MyISYErrorHandler

public class MyISYErrorHandler implements ErrorEventListener{

 */

public boolean errorOccured(int status, String msg, Object object)

{

System.err.println("Ooops, what went wrong? "+status + " "
+msg==null?" ":msg);

return false; //o, I don't have a GUIErrorHandler

installed, so don't try to display it

 }

}

Bow all that needs to be done is to make an application, instantiate

MyISYInsteonClient, register our error handler, and start the client.

The following code snippet is taken directly from

example.MyISYInsteonClientApp and it depicts a functional ISY Insteon

client which, upon start and authentication, notifies the application of all the

changes as they take place in ISY:

public class MyISYInsteonClientApp {

 private static MyISYInsteonClient myISY = null;

public static void main(String[] args) {

 myISY=new MyISYInsteonClient();

 Errors.addErrorListener(new MyISYErrorHandler());

 myISY.start(); //start the client

 /**

 * If you have firewall issues, you can directly access

 * ISY using it's uuid (see admin/config guide) and

 * its base url (http://x.y.z.w:port) as follows

 try{

 myISY.start("uuid:00:03:f4:02:66:e0","http://192.168.0.131:16872/");

 }catch(Exception e){

 System.err.println("BAD ISY URL\n");

 }

 */

}

ISY Developer’s Manual : Insteon JSDK

Universal Devices Inc.

Page - 19 -

The above example simply notifies the application of changes in ISY as they

happen. In order to effect a change in ISY (such as turning devices on/off,

creating scenes, adding schedules/triggers), all that’s necessary is to invoke

the relevant methods on the one and only instance of MyISYInsteonClient.

MyISYInsteonClientApp, as packaged in the library, implements a

command prompt sample set of behaviors which can be performed on ISY.

As such, walking through the code as well as the Javadocs is the best possible

way for the user to get the complete picture of how things are tied together.

In short, there are only two steps involved in order to create a functional ISY

client: a) extend ISYInsteonClient b) start the client inside an application.

ISY Developer’s Manual : Insteon JSDK

Universal Devices Inc.

Page - 20 -

4.0 Insteon Specific Packages

As it may have already been deciphered, ISY is based on quite a generic framework

which affords it to be extended for almost any type of device, protocol, and

communications medium without major development effort. In this respect, thus,

this section is dedicated to Insteon specific functionality and behavior as exhibited

through ISY and its clients for Insteon. There are only two Insteon specific packages

in the whole library, namely:

1. Package com.udi.isy.jsdk.insteon

2. Package com.udi.insteon.client

Please peruse the accompanying Javadocs for more information as they have

complete information about these packages, all the classes contained therein, and all

the methods and attribute for each class.

